The multivariate Tutte polynomial (alias Potts model) for graphs and matroids
نویسنده
چکیده
The multivariate Tutte polynomial (known to physicists as the Potts-model partition function) can be defined on an arbitrary finite graph G, or more generally on an arbitrary matroid M , and encodes much important combinatorial information about the graph (indeed, in the matroid case it encodes the full structure of the matroid). It contains as a special case the familiar two-variable Tutte polynomial — and therefore also its one-variable specializations such as the chromatic polynomial, the flow polynomial and the reliability polynomial — but is considerably more flexible. I begin by giving an introduction to all these problems, stressing the advantages of working with the multivariate version. I then discuss some questions concerning the complex zeros of the multivariate Tutte polynomial, along with their physical interpretations in statistical mechanics (in connection with the Yang–Lee approach to phase transitions) and electrical circuit theory. Along the way I mention numerous open problems. This survey is intended to be understandable to mathematicians with no prior knowledge of physics.
منابع مشابه
Zero-free regions for multivariate Tutte polynomials (alias Potts-model partition functions) of graphs and matroids
The chromatic polynomial PG(q) of a loopless graph G is known to be nonzero (with explicitly known sign) on the intervals (−∞, 0), (0, 1) and (1, 32/27]. Analogous theorems hold for the flow polynomial of bridgeless graphs and for the characteristic polynomial of loopless matroids. Here we exhibit all these results as special cases of more general theorems on real zero-free regions of the multi...
متن کاملSome Variants of the Exponential Formula, with Application to the Multivariate Tutte Polynomial (alias Potts Model)
We prove some variants of the exponential formula and apply them to the multivariate Tutte polynomials (also known as Potts-model partition functions) of graphs. We also prove some further identities for the multivariate Tutte polynomial, which generalize an identity for counting connected graphs found by Riordan, Nijenhuis, Wilf and Kreweras and in more general form by Leroux and Gessel, and a...
متن کاملExpected Lengths of Minimum Spanning Trees for Non-identical Edge Distributions
An exact general formula for the expected length of the minimal spanning tree (MST) of a connected (possibly with loops and multiple edges) graph whose edges are assigned lengths according to independent (not necessarily identical) distributed random variables is developed in terms of the multivariate Tutte polynomial (alias Potts model). Our work was inspired by Steele’s formula based on two-v...
متن کاملComplex zero-free regions at large |q| for multivariate Tutte polynomials (alias Potts-model partition functions) with general complex edge weights
We find zero-free regions in the complex plane at large |q| for the multivariate Tutte polynomial (also known in statistical mechanics as the Potts-model partition function) ZG(q,w) of a graph G with general complex edge weights w = {we}. This generalizes a result of Sokal [22] that applied only within the complex antiferromagnetic regime |1+we| ≤ 1. Our proof uses the polymer-gas representatio...
متن کاملThe Tutte Dichromate and Whitney Homology of Matroids
We consider a specialization YM (q, t) of the Tutte polynomial of a matroid M which is inspired by analogy with the Potts model from statistical mechanics. The only information lost in this specialization is the number of loops of M . We show that the coefficients of YM (1 − p, t) are very simply related to the ranks of the Whitney homology groups of the opposite partial orders of the independe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005